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ABSTRACT

The World Wide Web contains rich up-to-date information for

knowledge graph construction. However, most current relation

extraction techniques are designed for free text and thus do not

handle well semi-structured web content. In this paper, we propose

a novel multi-phase machine reading framework that reads the web

content with different granularity. It first detect the area of interest

at DOM tree node level and then extract the relational triple for each

area. To encode the web content, we propose HTMLBERT. It is a

pre-trained webpage encoder that fully leverages the visual layout

information and DOM-tree structure, without the need of hand

engineered features. Experimental results show that the proposed

approach outperforms state-of- the-art methods by a considerable

gain. The source code is available online.
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1 INTRODUCTION

The task of knowledge extraction (KE) is to harvest relational facts

from text sources. These facts are represented in the form of ⟨subject,
relation, object⟩ triples, in short, ⟨𝑠, 𝑟, 𝑜⟩. For example, ⟨Ray Allen,
Age, 35⟩ is one of the desired triples to be extracted from the context

in Figure 1.

Knowledge extraction is a key step towards knowledge graph

construction. In order to keep knowledge graphs up-to-date, previ-

ous researches have been devoted to extracting information from

various sources, including encyclopedias [19, 32], news articles [32],

Among all the sources, semi-structured vertical sites are arguably

the most promising source for first-hand and long-tailed informa-

tion [21, 41]. For example, a startup company in the early stage may
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not have news reports or an encyclopedia page. However, there

is a good chance that it has a homepage that contains its founder,
contact, location, etc. Therefore, the ability of extraction from semi-

structured webpage enables knowledge graph construction for the

long-tailed entities.

However, extracting from semi-structured web content is not

easy. The first challenge is the representation of the webpage. Un-

like normal natural language text, the webpage contains markup

language, which has semantic meaning regarding the organization

of the contents. Webpage sentences are also usually longer than

natural language ones. This hinders the usage of pre-trained lan-

guage models such as BERT [5], usually having a length limit of 512

tokens. In addition, a webpage can be rendered in a web browser,

which provides visual signals that a human can understand. Nat-

ural language processing models are preferred, whereas treating

the webpage as an image will lose semantic information. However,

most of the current natural language processing models only han-

dles one-dimensional inputs and thus lose layout information. The

second challenge is how to produce training data. Early approaches

such as wrapper induction [4, 11, 17] recruit human annotators to

label the DOM-nodes
1
. These methods achieve accurate extraction

results (e.g., over 0.95 precision in [11]) but fail to industrial sce-

narios due to two drawbacks: 1) they usually need annotation for

each website, which is too expensive for large-scale extractions;

2) they are not robust to changes even within the same website,

which is unbearable for the rapidly updated sites. An alternative

path is to apply distant supervision to generate abundant training

data [21]. This idea originally appears in relation extraction from

natural language text [25], where relational triples ⟨𝑠, 𝑟, 𝑜⟩ from
a seed knowledge base (KB) are aligned with a natural language

sentence. If the sentence contains both subject end object, then

⟨𝑠, 𝑟, 𝑜⟩ is regarded valid for the sentence. This approach gener-

ates abundant training data with small effort. However, due to the

incompleteness of KB, generated data often contains false nega-
tives [39], which means the unlabeled fields in a webpage contain

knowledge triples.

In this paper, we propose a pipelined extraction framework to

handle the semi-structured web content. Our solution is based on

BERT [5], a pre-trained language model (PLM) that achieve sat-

isfactory results on many natural language processing tasks [29].

However, mainstream BERT implementations have a limit of max-

imum input length, which is too small for the overwhelmingly

1
DOM is the short hand for Document ObjectModel, see https://dom.spec.whatwg.org/.
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long webpage (with thousands of tokens in a webpage, see Table 1).

Therefore, we propose a preliminary step that recursively prunes

the irrelevant DOM subtrees so that the remaining DOM subtrees

are adequate for subsequent models. We extend its pre-defined

vocabulary so that it can work with HTML tags. We extend the po-

sitional embedding of BERT to cope with the extreme case (such as

the cast relation inmovie vertical) where the text in a single node is

longer than the length limit. We also encode the layout information

of a webpage into the PLM, thus providing more visual-semantic

clue. We adopt the distant supervision setting. To reduce the im-

pact of false negatives, we propose a novel relation extractor that

identifies relation mentions first and then find the objects for each

relation. For a false negative training instance, instead of wrongly

classifying the ⟨𝑟, 𝑜⟩ pair as negative [22, 23], our method model

the false negatives as “unlabeled positives”. Besides, modeling the

extraction of relations and objects as two separate steps also en-

sure that the model is aware of the corresponding relation when

extracting objects.

Our contributions are threefold. Firstly, we novelly model the

task of extracting knowledge from semi-structured web as machine

reading comprehension (MRC) with different granularity and pro-

pose a general framework, dubbed WebKE. It works well with

distantly supervised training data, which require neither human

annotation efforts nor handcrafted features. Secondly, we propose

HTMLBERT, a pre-trained webpage encoder based on BERT, to

deal with the idiosyncrasies (i.e., exceedingly long content, layout

information, vocabulary specially for markup language, etc.) of web

content. Thirdly, we conduct comprehensive experiments to verify

our solution. The evaluation results show that WebKE consistently

outperforms the competitors and behave well even under adverse

circumstances where the false negative rate is 70%.

2 RELATEDWORKS

Knowledge extraction from semi-structured web connects with a

broad body of researches on information extraction.

Relation Extraction from Natural Language Text. Distantly super-

vised relation extraction receiveswide attention [7, 13, 25, 30, 31, 42].

Recent approaches that incorporate PLMs push the performance

to a new height [35, 37]. Web contents can be converted to natural

language after a simple preprocessing step. By removing the HTML

tags (e.g., <div>, <span>) and keeping only the “inner-text")2, abun-
dant off-the-shelf relation extraction methods can be applied. Nev-

ertheless, the loss of layout information and the inability to deal

with DOM tree structures becomes a fatal drawback.

Visual-based Document Recognition. This line of researches fo-
cuses on the extraction from scanned documents [8, 15, 24, 40].

These methods treat documents as image and incorporates coordi-

nates of each textual component into the model together with the

text representation. Applying these methods to the semi-structured

web will introduce unnecessary OCR
3
step. Even worse, the pro-

cessing unit of these models are “pages", which is natural in scanned

documents, but not applicable for the web context. A webpage usu-

ally exceeds the maximum input length of models while division

2
Refer to https://html.spec.whatwg.org/ for a comprehensive introduction.

3
https://en.wikipedia.org/wiki/Optical_character_recognition

by screens may cause the separation of a ⟨relation, object⟩ pair into
multiple pages.

DOM-based Web Extraction. These methods utilize the intrinsic

structure of the webpage. Method of this category includes learn-

ing wrappers (i.e., a DOM-specific parser that can extract content

of interest) [4, 11, 17], visual-pattern-oriented models (or scoring

rules) [12, 43] and neural models [6, 20, 23]. All these methods

need heavy human efforts such as wrapper annotations, heuris-

tic scoring rules (e.g., visual proximity), handcrafted features that

fed into the neural networks or prior knowledge that being used

for post-checking. Recent approaches apply distant supervision

to automatically generate training instances by aligning triples

from existing knowledge bases (KBs) with the source web [21, 22].

Although significantly reducing the annotation effort, it causes

inevitable false negatives due to the incompleteness of KBs [39].

3 PROBLEM MODELING

3.1 Problem Definition

We now formally define our task. Given a webpage𝑤 ∈ W describ-

ing a subject entity 𝑠 (also called topic entity in previous literature),

our goal is to extract ⟨𝑟, 𝑜⟩ pairs to form a relational triple. In 𝑤 ,

a node 𝑛 is a part of the DOM tree, where a sub-node (or textual

content if the node is leaf node) wrapped by a pair of markup tags

(e.g., <div> text </div>). Depending on whether the relations are
predefined, there exist two settings, i.e., ClosedIE and OpenIE [22].

In ClosedIE, existing neural approaches often model the extraction

problem as leaf node tagging [20, 23], which aim to learn a classi-

fication function F : (𝑤,𝑛) ↦→ 𝑟 to indicate whether the current

node 𝑛 is the object is expressing the relation 𝑟 . Here 𝑟 ∈ R is a set

of pre-defined relations. However, Lockard et al [22] showed that

websites even in the same vertical usually have different relation

set. For example, the IMDb ontology can cover only 7% of the total

relation set in the movie vertical.

Therefore, we adopt OpenIE, where the relation is also expected

to be extracted. In previous task formulation [22, 23], the first step

is to enumerate all the candidate node pairs in a webpage. Then

the task reduces to binary classification on these pairs, indicating

whether they form a valid ⟨relation, object⟩ pair. This kind of task

definition formulates a hard learning problem for two reasons. First,

this setting may generate excessive negative instances since most

node pairs do not form valid relational pairs (though filtering heuris-

tic is applied). Second, spurious mentions of objects [21, Figure 1]

may result in different labels for the same training instance.

3.2 Solution Framework

The overall framework of our solution is presented in Figure 1.

Hereinafter, we consider the webpage𝑤 as a sequence of 𝑁 tokens

t = [𝑡1, ..., 𝑡𝑁 ].

Task 1: Area of Interest (AOI) Finding. As is pointed out by previ-

ous research [21], a typical webpage content exceeds the maximum

length 𝑀 of neural models. Therefore, we first introduce a task

called area of interest (AOI) finding. We define an area as a node
together with its child node(s) and the length of area as the length
of all the tokens in the area. The area is of interest if it contains

information fields (see Figure 1) for further knowledge extraction.

https://html.spec.whatwg.org/
https://en.wikipedia.org/wiki/Optical_character_recognition


Task 1 
Aera of Interest Finding

Task 2 
Relation Extraction

≤ maxlen

DOM subTree

> maxlen

Original Webpage

DOM-subtree

Extracted <Relation, Object> Pairs

<table cellpadding="0" cellpadding="1" border="0"><tr>
<td valign="top"><strong>Birth Date</strong></td>
<td valign="top">July 20, 1975</td></tr>
<tr>
<td valign="top"><strong>Birth Place</strong></td>
<td valign="top">Merced, CA</td></tr>
<tr>
<td valign="top"><strong>Height</strong></td>
<td valign="top">6-5</td></tr>
<tr>
<td valign="top"><strong>Weight</strong></td>
<td valign="top">205 lbs.</td></tr>
</table>

"Age":["35"],"Height":["6-5"],
"Weight":["205 lbs."]
"Birth Date":["July 20, 1975"],
"Birth Place":["Merced, CA"],
...

Position
Rendering

Subject Entity

Information Fields

Original Webpage

Extracted  
triples

Inner Text

HTML Tags

Properties

Figure 1: The overall framework of WebKE. The example webpage is from the NBA player domain.

The HTML content is organized in a DOM tree structure, which

make it possible to prune irrelevant page components and hence,

limit the input length before extraction. Specifically, we perform

topdown traversal on each level. At a certain level 𝑘 , we form a

sequence of tokens n𝑘 ⊂ t using only the nodes at 𝑘-th layer (their

child nodes excluded) and use a machine reading comprehension

(MRC) [2] model to decide which node(s) at this level contain(s)

information fields for further knowledge extraction. We denote by

𝑎 the expected area to be extracted. The target of training is to

maximize the following likelihood in Eq. (1).

Pr(𝑎 |n𝑘 ;𝜃 )

=
∏
𝑘∈K𝑎

|n𝑘 |∏
𝑛=1

(𝑦𝑛,𝑘𝑎 )1[𝑦
𝑛,𝑘
𝑎 =1] (1 − 𝑦

𝑛,𝑘
𝑎 )1[𝑦

𝑛,𝑘
𝑎 =0] ,

(1)

where𝑦
𝑛,𝑘
𝑎 refers to the probability of𝑛-th token being the start/end

of an area of interest; K𝑎 = {𝑎𝑠𝑡𝑎𝑟𝑡 , 𝑎𝑒𝑛𝑑 } is the pointer identifier;
𝑦
𝑛,𝑘
𝑎 is the ground truth from training data; all the parents nodes

become AOI if a child node is AOI; 1[condition] = 1 when the

condition happens.

At predicting phases, after the node(s) is (are) recognized as

AOI, its (their) child node(s) are expanded to form a new sequence

of input (i.e., we proceed to the next level). If there is only one

element in a level, we directly proceed to the next level. This process

is recursively applied until the length of an area is smaller than

maximum length𝑀 of subsequent models or none of the area in the

current branch is of interest. In practice, the threshold of this step

will be rather low, because we are tolerant to the false predictions.

Even if a node with no information fields wrongly recognized as

AOI (such as the pink node in Figure 2), the final result of AOI

finding will be correct as long as none of its child nodes are picked

out.

Task 2: Relation Extraction. Next, we formulate the relation ex-
traction task. Let t𝑖 be the area of interest detected by the Task 1.

We use 𝑇𝑖 = ⟨𝑟, 𝑜⟩ to denote the set of all triples in t𝑖 labeled by

distant supervision. We assume that the seed knowledge base used

by distant supervision is capable of labeling enough samples for

training (refer to Section 5.5 for quantification of “enough samples”),

though with missing triples (i.e., the false negatives). We omit the

subject 𝑠 in 𝑇𝑖 because all the triples of interest have the same 𝑠 .

Let D denote the whole dataset. Given a training instance (t𝑖 ,T𝑖 )
fromD, we aim to maximize the likelihood in Eq. (2). We formulate

the task as reading comprehension that first find the relation 𝑟

and then find its corresponding object 𝑜 . To implement this idea,

Eq. (3) is decomposed into two components using the definition of

conditional probability.

|D |∏
𝑖=1

Pr(𝑇 |t𝑖 , 𝑠;𝜃 ) (2)

=

|D |∏
𝑖=1

∏
𝑟 ∈𝑇𝑖

Pr(𝑟 |t𝑖 , 𝑠;𝜃 )
∏

⟨𝑜 ⟩∈𝑇𝑖 |𝑟
Pr(𝑜 |𝑟, t𝑖 , 𝑠;𝜃 ), (3)

where 𝑟 ∈ 𝑇𝑖 stands for 𝑟 ∈ {𝑟 | ⟨𝑟, 𝑜⟩ ∈ 𝑇𝑖 }, 𝑟 occurs in the triple

set w.r.t. t𝑖 ; 𝑜 ∈ 𝑇𝑖 |𝑟 stands for 𝑜 ∈ {𝑜 | ⟨𝑟, 𝑜⟩ ∈ 𝑇𝑖 |𝑟 }; 𝑇𝑖 |𝑟 denotes a
subset of 𝑇𝑖 with a common relation 𝑟 . We denote by 𝜃 the model

parameters. Under this decomposition, relational triple extraction

task is formulated into two subtasks: relation mention detection and

object extraction.
We model both of tasks as machine reading comprehension

(MRC) [2]. In relation mention detection, multiple continuous spans

from t𝑖 are extracted representing the expected relations. We for-

malize it in Eq. (4) as a boundary detection task with two pointers

indicating the start (end) positions of the answer spans [34]. For



<html>
<head>...</head>
<body class="nba">
  <div class="bg-elements">
    <div class="main">
      <div class="transitional-elements">
        <div id="transitional-headerBG"></div>
        <div id="header">...</div>
        <div id="nav-wrapper">...</div>
        <div class="banner">...</div>
        <div class="mod-tabs-section">...</div>
      </div>
      <div class="content">
        <div id="fb-root"></div>
        <div class="col-left topPad">
          <div class="nameCont">...</div>
          <div class="clear"></div>
          <table class="statCont" cellpadding=...>..</table>
        </div>
        <div class="col-right">...</div>
        <div class="clear"></div>
      </div>
      <div class="transitional-elements">...</div>
    </div>
  </div>
</body>
</html>
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Figure 2: An example webpage illustrating the level-wise

process of finding AOI. All the tokens fed into AOI finder

module in the bottom are from nodes at level 4 (without

child nodes.). The green nodes are correctly predicted as AOI,

while the pink one is a false prediction. We also show the

corresponding HTML content on the top. The final AOI (i.e.,

<table class="statCont" ... </table>) is recognized at level 6.

simplicity, we omit 𝑠 in the task input because in our assumption,

each webpage has only one subject entity. This formulation is ex-

tensible to the webpages containing multiple entities by adding the

subject entity as a query.

Pr(𝑟 |t𝑖 ;𝜃 )

=
∏
𝑘∈K𝑟

𝑁∏
𝑛=1

(𝑦𝑛,𝑘𝑟 )1[𝑦
𝑛,𝑘
𝑟 =1] (1 − 𝑦

𝑛,𝑘
𝑟 )1[𝑦

𝑛,𝑘
𝑟 =0] ,

(4)

where K𝑟 = {𝑟𝑠𝑡𝑎𝑟𝑡 , 𝑟𝑒𝑛𝑑 } and 𝑦𝑛,𝑘𝑟 refers to the probability of 𝑛-

th token being the start/end of the relation mention; 𝑦
𝑛,𝑘
𝑟 is the

ground truth from the training data; if ∃𝑝 ∈ 𝑇𝑖 appears at position

from 𝑛 to 𝑛 + 𝑙 , then 𝑦
𝑛,𝑟𝑠𝑡𝑎𝑟𝑡
𝑟 = 1 and 𝑦

𝑛+𝑙,𝑟𝑒𝑛𝑑
𝑟 = 1, otherwise 0;

1[·] is an indicator function. Similarly, the object extraction task is

formulized in Eq. (5).

Pr(𝑜 |𝑟, t𝑖 ;𝜃 )

=
∏
𝑘∈K𝑜

𝑁∏
𝑛=1

(𝑦𝑛,𝑘𝑜 )1[𝑦
𝑛,𝑘
𝑜 =1] (1 − 𝑦

𝑛,𝑘
𝑜 )1[𝑦

𝑛,𝑘
𝑜 =0] ,

(5)

The notations and task formulation are same with the relation

mention detection except for two points. 1) The relation mention is

taken as a query input of the task; 2) The object, instead of relation

mention, become the target of extraction (subscripts are changed,

e.g., from 𝑦𝑟 to 𝑦𝑜 ).

4 OUR MODEL

In this section, we describe the model implementation. We first de-

scribe Pre-trained Webpage Encoder, which is used in all subsequent

models. A raw webpage is firstly refined by AOI finder to keep those
DOM subtrees that contains information fields of interest. Next,

the selected nodes are fed into the relation extractor to extract the

relation and objects.

4.1 HTMLBERT: Pre-trained Webpage Encoder

We regard the input DOM (sub)tree as a sequence of tokens t. Web

content differs from the normal textual content in two aspects. It

contains additional markup vocabulary and semi-structured layout
information. Therefore, we need to make corresponding upgrades

to the original BERT encoder [5].

Extended Vocabulary. HTML tags (e.g., <a>, <table>, <tr>)
contribute a lot to the web structure, which is essential for extrac-

tion. For example, relation mention and objects are likely to appear

in the same <section> or <div> while tags like <nav> <button>
are less likely to contain information fields. Considering the HTML

tag as a single token instead of tokenizing them into subwords will

better retain the semantic and structural information.

Extended Positional Embeddings. BERT used an absolute posi-

tional embedding, derived from pretraining, which has a length

limit (usually 512 tokens). A webpage usually contains overwhelm-

ingly long sequence of tokens. In extreme cases (e.g., the “cast”

in IMDb
4
), even within an area of interest, the sequence length

exceeds the maximum length limit. Truncating or sliding-window-

based methods [36] may cause separation between relation and

its objects and fail to capture long-term relations. However, even

if the positions are not limited, the memory consumption is unaf-

fordable because the space complexity is O(𝑁 2), which grows very

fast with token length 𝑁 . Therefore, we develop an hierarchical

positional embedding that extend the original positional embed-

ding of BERT. We obtain pre-trained position embedding vectors

p = [𝑝1, 𝑝2, ..., 𝑝𝑛] from BERT. Our aim is to construct a series of

new embedding vectors v = [𝑣1, 𝑣2, ..., 𝑣𝑚],𝑚 > 𝑛, so that more

positions can be represented. Therefore, we introduce a vector basis

u = [𝑢1, 𝑢2, ..., 𝑢𝑛] for v. Their connection is defined by

v(𝑖−1)×𝑛+𝑗 = 𝛼u𝑖 + (1 − 𝛼)u𝑗 , 𝛼 ∈ (0.1, 0.5) ∪ (0.5, 1) (6)

4
https://www.imdb.com/title/tt5034838/fullcredits
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This equation indicates a 2-D representation (𝑖, 𝑗) for the [(𝑖 − 1) ×
𝑛 + 𝑗]-th token, which ensures that any position under 𝑛2 has a po-

sitional embedding. To be compatible with the originally positional

embedding, we hope that the first 𝑛 positional embeddings are the

same with BERT, i.e., v1 = p1, v2 = p2, · · · , v𝑛 = p𝑛 , which lead us

to Eq. (7).

u𝑖 =
p𝑖 − 𝛼p1
1 − 𝛼

, 𝑖 = 1, 2, · · · , 𝑛 (7)

Layout Embeddings. Relative positions of words in a webpage

convey much semantic information. Given that the current node

is a relation mention, its corresponding object value is much more

likely to appear on its right or below rather than on the left or

above. Hence, we render the webpage using headless chrome
5
and

record the position of elements by selenium6
. Inspired by [40], we

use bounding box to locate the position of an area in the webpage.

Specifically, each DOM node is characterized by four position in-

dicators, i.e., (𝑝𝑥0 , 𝑝𝑦0 , 𝑝𝑥1 , 𝑝𝑦1 ), where (𝑝𝑥0 , 𝑝𝑦0 ) is the upper-left
position of the node and (𝑝𝑥1 , 𝑝𝑦1 ) corresponds to the bottom-right

position. If a node contains child node(s), we select the minimum

bounding box that can cover all of them. The position of a token is

the same with the node it belongs to.

Hidden Layers and Pre-training. The hidden layers are given by

H0 = TW𝑡 +W𝑔 +
∑︁
𝑘

W𝑘
𝑝 (8)

H = TRANS(H0) (9)

where T is one-hot tokens indices matrix; W𝑡 is the token embed-

ding matrix; W𝑔 is the segmentation embedding matrix where 𝑔

represents the segmentation index in the input sequence; TRANS(·)
is the multi-layer bidirectional Transformer structure [33], the ar-

chitecture is the same as BERT [5]. W𝑘
𝑝 is the position embedding

matrix where 𝑘 ∈ {𝑝0, 𝑝𝑥0 , 𝑝𝑦0 , 𝑝𝑥1 , 𝑝𝑦1 }; W
𝑝0
𝑝 is the 1-D positional

embedding of token sequence and the others are defined above and

𝑝 is the position index in the input sentence; H is the last-layer

hidden representation, i.e., the output of BERT. We pre-train the

webpage encoder via the standard “masked language model" and

“next sentence prediction" tasks [5]. The SWDE corpus we used

for pre-training is described in Section 5.1 Note that, our webpage

encoder do not involve any hand-crafted features.

4.2 Module 1: AOI Finder

The AOI finder module recognize all the areas of interest at level 𝑘 .

As is illustrated in Figure 2, the input of the module is a sequence of

tokens [[CLS], n𝑘 , [SEP]], where n𝑘 are the nodes from 𝑘-th level

of the DOM tree (see Section 3.2). We perform preprocessing by

moving out the properties from inside the HTML tags to the outside,

whichmake it easier for BERT tokenizer to recognize theHTML tags

as a whole while retaining the signals provided by the properties.

For example, the property class="translational-elements" in
Figure 2) are moved out of the HTML tag, resulting in <div> to be

recognized as a special character. Only the values in class and id
are used, while those property values without a semantic clue such

as cellpadding are removed. This operation will not affect the

inner text because in most cases the nodes other than the leaf nodes

5
https://sites.google.com/a/chromium.org/chromedriver/getting-started

6
https://www.seleniumhq.org/

do not contain textual content. We use ŷ𝑎 = [0, 1]𝑁×2
to estimate

𝑦
𝑛,𝑘
𝑎 in Eq. (1). ŷ𝑎 consists of two 𝑁 -dim vectors, representing a

pointer of start/end of an AOI. They are defined by

ŷ𝑘𝑎 = 𝜎 (W𝑘
𝑎H𝑎 + b𝑘𝑎 ), (10)

where 𝑘 ∈ {𝑎𝑠𝑡𝑎𝑟𝑡 , 𝑎𝑒𝑛𝑑 } is in accordance with Eq. (1); H𝑎 be the

hidden representation specific to AOI finder module, whose general

form is defined in Eq. (9);W𝑘
( ·) and b

𝑘
( ·) are trainable parameters;𝜎 is

the sigmoid activation function. The final AOI spans are generated

by gathering all the pointers above the threshold then pairing the

nearest 𝑎𝑒𝑛𝑑 to a given 𝑎𝑠𝑡𝑎𝑟𝑡 .

4.3 Module 2: Relation Extractor

We next extract relational triples from the AOI detected in Sec-

tion 4.2. The relation extractor consists of two cascaded MRC

models. The first model tags the start/end positions of the rela-

tion mentions, which are fed one by one into the second model as

queries to tag the start/end positions of the objects. Specifically,

ŷ𝑟 = [0, 1]𝑁×2
corresponds to 𝑦

𝑛,𝑘
𝑟 in Eq. (4) and ŷ𝑜 = [0, 1]𝑁×2

corresponds to 𝑦
𝑛,𝑘
𝑜 in Eq. (5). The input of the relation mention

tagger is x𝑟 = [[CLS], t𝑖 , [SEP]], We use H𝑟 to denote output ma-

trix of BERT. The 𝑘-th output pointer of relation mention tagger is

defined by

ŷ𝑘𝑟 = 𝜎 (W𝑘
𝑟 H𝑟 + b𝑘𝑟 ), (11)

where 𝑘 ∈ {𝑟𝑠𝑡𝑎𝑟𝑡 , 𝑟𝑒𝑛𝑑 } is in accordance with Eq. (4). A relation

mention is formed by the same nearest-first principle in Section 4.2.

The input of the object tagger is slightly different, which is

x𝑜 = [[CLS], q𝑖 , [SEP], t𝑖 , [SEP]]. q𝑖 is formed by the relation men-

tion extracted above. For a comprehensive study of how the differ-

ent queries affect the extraction performance, readers may explore

many recent works [18, 44]. The object tagger is triggered |𝑟 | times,

where |𝑟 | is the number of relations extracted by the relation men-

tion tagger. The 𝑘-th output pointer of object tagger is defined

by

ŷ𝑘𝑜 = 𝜎 (W𝑘
𝑜H𝑜 + b𝑘𝑜 ), (12)

where 𝑘 ∈ {𝑜𝑠𝑡𝑎𝑟𝑡 , 𝑜𝑒𝑛𝑑 } is in accordance with Eq. (5). Likewise, an

object is formed by nearest pairing. Note that if a relation mention

occurs at multiple locations in the webpage, all the mentions are

leveraged to perform multiple extractions, where the token rep-

resentation are the same but position and layout embeddings are

different. The final results of the same relation are merged.

An obvious advantage of this kind of model design is that the

relation mention and objects values are one-to-one mapped. That is,

we do not need extra effort to score the candidate ⟨𝑟, 𝑜⟩ pairs [22]
and filter out the spurious mentions (falsely generated from web-

page sections such as “you may also like”).

4.4 Learning Objective

As is pointed out in previous works [21, 39], false negatives are

caused by incomplete KB or imperfect ontology, which are com-

mon cases in practice. As a result, we need to apply corresponding

learning objective to alleviate their impact. For AOI finder, normal

cross entropy is applied because knowledge triples usually share

a common information field, which enable us to get a correct su-

pervision of AOI even with incomplete triple labeling. For relation

https://sites.google.com/a/chromium.org/chromedriver/getting-started
https://www.seleniumhq.org/
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Figure 3: The two-staged relation extractor model. The full DOM subtree is fed into the model. We omit some leaf nodes for

clarity. In the example sentence, the relation mention tagger first tag Birth Place and Age as relation mentions, then each of

them is considered as a query and sent to the object tagger together with the sentence. Here, the object tagger is triggered twice,

extracting Merced, CA and 35 as object values for the two relations (indicated by the “1” in the blocks, marked with different

colors), respectively.

extractor, we adopt collective loss function [38, 39], which is de-

signed to handle the false negatives in data. Its basic idea is to view

a small portion of the negative labels as the unlabeled positives.

Thus, the excessively imposed penalty on negative labels should be

reduced. The loss functions for relation mention tagger and object

tagger are detailed in Eq. (13) and Eq. (14), respectively.

ℓ𝑟 (ŷ𝑘𝑟 , y𝑘𝑟 ) =


−𝛾𝑟 ln(

𝑁∑︁
𝑛=1

𝑦
𝑛,𝑘
𝑟 ]) if 𝑦

𝑛,𝑘
𝑟 = 1,

− ln(1 − |
𝑁∑︁
𝑛=1

𝑦
𝑛,𝑘
𝑟 − 𝜇𝑟 |) otherwise;

(13)

ℓ𝑜 (ŷ𝑘𝑜 , y𝑘𝑜 ) =


−𝛾𝑜 ln(

𝑁∑︁
𝑛=1

𝑦
𝑛,𝑘
𝑜 ]) if 𝑦

𝑛,𝑘
𝑜 = 1,

− ln(1 − |
𝑁∑︁
𝑛=1

𝑦
𝑛,𝑘
𝑜 − 𝜇𝑜 |) otherwise,

(14)

where 𝛾 ( ·) ∈ (0, 1) is a hyperparameter that downweighs the posi-

tive penalty to avoid losing the original class label ratio; 𝜇 = 𝜋 (𝜏+1)
is set according to [39], where

𝜏 ≈ 1 − # labeled positive

# all positive

is the unlabeled positive ratio in positive data and

𝜋 =
# all positive

# all samples

is the positive class prior.

5 EXPERIMENTS

With the goal of putting WebKE to practical use, we investigate the

following research questions: 1) How is the overall performance

of WebKE in comparison to the current state-of-the-art. 2) Are all

the components proposed by this method necessary? 3) How many

samples are needed to train the model? 4) Will WebKE behave

properly under adverse circumstances, such as starting with an

incomplete seed knowledge base?

5.1 Datasets

For BERT pretraining, we take the Structured Web Data Extraction

(SWDE) dataset [12], which contains webpages and ground truth

extractions from 10 websites in 8 domains, with 124,291 webpages

in total. For evaluating WebKE, we use the augmented version [22]

of the SWDE dataset, which provides more gold labels for OpenIE

extractions for 21 sites in 3 vertical domains (i.e., NBA player, Movie

and University). The dataset contains between 400 and 2000 pages

per sites, with an average of 36 predicates and 41K triples. The

statistics of the dataset is presented in Table 1. A relation is common
if it is covered by half of the sites. The congruity is calculated by

a Jaccard-like metric to characterize the homogeneity of relations

in the vertical, congruity = #common relations

# all relations
. A larger congruity

means more homogeneous relation are in the vertical. We perform

some preprocessing steps: We preprocess the dataset to better suit



our problem setting. 1) When encountering hierarchical relations

(e.g., cast-director) we only keep the fine-grained relation. 2) We

remove the relations whose mentions do not appear in the website.

3) We remove those elements in a webpage that do not contribution

to the semantics, such as the contents between <scripts> tags.

5.2 Experimental Settings

We implemented our algorithms in Keras and Tensorflow. All exper-

iments were run on a machine with Nvidia RTX3090 GPU and 24GB

of graphical memory. We adopt mini-batch mechanism for stochas-

tic optimization. The hyperparameters are as follows. We set with

batchsize as 4; the learning rate as 2e-5 and use Adam [16] as the

optimizer. We also save the best F1 score model in validation set to

prevent the model from over-fitting. The pre-trained BERT model

we used is BERT-Tiny-Uncased [14], which contains 14.5M param-

eters. The number of stacked bidirectional Transformer blocks is 2

and the size of hidden state is 128. Besides, we set the threshold to

0.2 for both start and end of the AOI finder to improve the recall.

Table 1: Statistics of the dataset with three common verticals.

Movie NBA player University

# Websites 8 8 5

# Common Relations 8 9 11

# All Relations 54 30 123

Congruity of Relations 14.80% 30% 8.90%

Average Token Length 11764 14540 8662

5.3 Overall Comparison

Compared Methods. Our main results are in comparison with

three web extraction baselines in the OpenIE setting.

• WEIR [1]. The Web Extraction and Integration of Redun-

dant data (WEIR) method utilizes the websites in the same

domain and learn from the overlap in observed entities to ex-

tract predicates. Besides, WEIR proposed a method that iden-

tify predicate in HTML with the extraction rules it learned

through retrieving strings that frequently appear nearby

extracted objects.

• Colon Baseline [22]. This is a baseline method borrowed

fromOpen-Ceres. It is designed based on the observation that

relation mentions and objects in semi-structure webpages

often appear in pairs in sibling DOM nodes. A relation men-

tion usually ends with a colon, with corresponding objects

locates right or below. This baseline identifies the relation

mention that ends with a colon, and extracts the closest text

field behind as objects.

• OpenCeres [22]. Based on seed facts for relations present

on the site, OpenCeres proposed a semi-supervised label

propagation technique to generate training data, and use

them to learn a site-specific classifier for relation extraction.

• WebKE. This implements our model as described in Sec-

tion 4, using the expanded SWDE dataset to train a webpage

information extractor.

Evaluation and Metrics. We use strict match for evaluation. An

extracted relational triple ⟨𝑠, 𝑟, 𝑜⟩ is considered as correct only if

both the relation mention and the object are correct and related to

the subject. We use the metrics as in accordance with the baseline

methods, which are standard micro Precision (Prec.), Recall (Rec.)

and F1 score.

Main Results. Table 2 shows the main result of WebKE in three

verticals, namely Movie, NBA player and University. We observe

thatWebKE outperforms all the compared models by a considerable

margin. In specific, WebKE achieves an overwhelming 16%, 40%

and 57% improvement over the current state-of-the-art method [22]

on three verticals, respectively.

5.4 Comparison to CloseIE Methods

Although our method is designed for openIE, we also compare

those methods designed for closeIE. We make the comparison as

fair as possible by only focusing on the relations that appear in

the closeIE schema. Nevertheless, openIE is still harder due to its

problem setting, which selects a span instead of closeIE that per-

forms multiclass classification on the relation set. To fit the CloseIE

setting, we select part of triples in expanded SWDE dataset that

mention in SWDE ground truth and map the open relations to

the pre-defined ones. Considering the fact that some objects in

SWDE dataset that does not have an obvious mention of relation
7
.

We compared with human annotation methods: HAO et al. [12],
XTpath [3], BigGrams [26], Vertex++ [10]; unsupervised methods:

RR+WADaR [27], RR+WADaR 2 [28], WEIR [1]; and distant super-

vision methods: LODIE [9], CERES [21], We show the comparison

in Table 3. We observe that WebKE performs among top 2 of the

competitors, even this setting is unfair to our openIE extraction

approach.

5.5 WebKE in Few Shot Setting

0 25 50 75 100 125
Num of shots

0.4

0.6

0.8

F1

NBAPlayer
University
Movie

Figure 4: Performance of WebKE using different quantities

of training samples.

This experiment answers the practical problem: how many shots

are adequate for a new website? We first perform a pre-training

step that use a bunch of seed sites in a vertical to train WebKE

and then finetune on a new site in the same vertical. If no new

7
In accordance with previous researches, we only keep the relations pre-defined in

their closeIE setting.



Table 2: Overall Comparison for the OpenIE setting. The results of three baselines are excerpted from [23]. Best results are

marked Bold. The last four rows are ablation studies where “-” means to remove that component. The abbreviations are

explained as follows. LE: Layout Embedding, EV: Extended Vocabulary, PE: Extended positional Embedding

Movie NBA player University

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

WEIR 0.14 0.1 0.12 0.08 0.17 0.11 0.13 0.18 0.15

Colon Baseline 0.63 0.21 0.32 0.51 0.33 0.40 0.46 0.31 0.37

OpenCeres 0.71 0.84 0.77 0.74 0.48 0.58 0.65 0.29 0.4

WebKE 0.97 0.89 0.93 0.99 0.97 0.98 0.99 0.96 0.97

- AOI 0.86 0.92 0.89 0.99 0.96 0.97 0.98 0.96 0.97

- LE 0.96 0.87 0.91 0.97 0.93 0.95 0.98 0.93 0.95

- EV - LE 0.79 0.75 0.77 0.94 0.94 0.94 0.93 0.94 0.94

- EV - LE - PE – – – 0.94 0.94 0.94 – – –

Table 3: Evaluation on CloseIE setting. The abbreviations un-
sup. stands for unsupervised. The results of previous meth-

ods are quoted from [21]. Best and second-best results are

marked bold and underlined.

Labels Movie NBA player University

Hao et al. human 0.79 0.82 0.83

XTPath human 0.94 0.98 0.98

BigGrams human 0.74 0.90 0.79

Vertex++ human 0.90 0.97 1.00

RR+WADaR unsup. 0.73 0.80 0.79

RR+WADaR 2 unsup. 0.75 0.91 0.79

WEIR (CloseIE) unsup. 0.93 0.89 0.97

LODIE distant 0.86 0.90 0.96

CERES distant 0.99 0.98 0.94

WebKE distant 0.95 0.98 0.99

webpages are used for training, it is called a zero-shot setting [23],

which is an ideal setting. However, extraction results are far from

satisfactory. Therefore, wemake few-shots of training data available

to the model to enhance the performance. Suppose there are 𝑁

websites in a vertical, we select 𝑁 − 1 site from the same domain as

background knowledge and train our model on it. Then we select 𝑘

webpage from the remaining website for training, namely, 𝑘-shot.

We finetune our model on it and test on other webpages from this

website.

The results are shown in Figure 4. We observe that for movie
and NBA player vertical F1 increases with the number of shots and

gradually comes to a standstill at around 50 shots. This indicates that

for real applications, 50 shots might be a proper choice. However,

university vertical requires much more samples to train. This may

be caused by the fact that the university ontology is much bigger

than the others (see Table 1, “# all relations”). That is, the model

needs to learn the representation for more relations, some of which

are even not available in the pre-training step.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Percentage

0.7

0.8

0.9

1.0

F1

NBAPlayer
University
Movie

Figure 5: Experiment on synthetic dataset with false nega-

tives. The abscissa represents the percentage of triples are

deleted from the dataset and the ordinate is the F1 score.

5.6 Robustness to False Negatives

To further investigate the robustness of WebKE towards false neg-

ative labels, we simulate the situation where different percentages

of relational triples are missing in the knowledge base. We first

generate seven synthetic datasets, where we randomly delete 10%-

70% of triples from the original training set, representing different

false negative rates. We show the F1 score of the three verticals in

Figure 5. We observe that there is only a slight drop of performance

in every vertical when more triples are deleted. In the NBA player
vertical, the F1 score remains over 0.9 even when 70% of the triples

are missing, which indicates that our method is robust to the false

negatives caused by incompleteness of KB. We also find out that the

domain with more diverse relations suffers from more performance

drop. For example, the university domain drops the most (from 0.88

to 0.76) when more triples are deleted, whose congruity of relations

is 8.9% (see Table 1), the least among three verticals.

5.7 Ablation Study

To further justify the effectiveness of each component of WebKE,

we perform an ablation study. The results are shown in the last

four rows of Table 2. The AOI finder plays an important role when



Table 4: Percentage of remaining content after AOI finder.

Vertical Remaining

Movie 41%

University 37%

NBA player 61%

the webpages are long. For example, in the movie vertical, the pre-
cision drops dramatically when AOI finder is removed. We study

the error extractions and find out that there usually exists ‘movie

recommendation’ section, which contains ⟨𝑟, 𝑜⟩ facts of players
other than the current subject. It is easily recognized by AOI finder,

which leverages more of the DOM structure by design. However,

removing it does increase the recall, which means there may ex-

ist wrongly pruned DOM subtrees. Besides, from Table 4 we can

conclude that AOI finder greatly reduce the content size. Among

the components in the webpage encoder module, Extended vocab-
ulary contributes the most to the performance. It is reasonable

because without those vocabulary the tokenizer will cut HTML

tags into sub-words, which impairs the understanding of the web

content. We also observe that in NBA player domain, the extended

position embedding does not harm the overall performance, which

means that it sacrifices nothing but memory space to encode longer

sequences. We do not try the other domains without positional

embedding due to their exceeding length even after AOI finding.

6 CONCLUSION

In this paper, we introduce a framework called WebKE that extracts

knowledge triples from semi-structured web. WebKE novelly ex-

tend the power pre-trained language models to markup language

and encode the layout semantics of a webpage. Our extraction

framework works perfectly with distantly supervised training data,

which require neither human annotation efforts nor handcrafted

features. Experimental results shows that WebKE achieve a huge

improvement over the state-of-the-art baselines on different verti-

cals.
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