
SEED：基于RDF知识库的实
体扩展与知识纠错系统

	
�

陈跃国 中国人民大学	
�

概要 	
�

¨  研究背景
¨  问题定义
¨  关键技术
¨  实验结果
¨  系统展示
¨  总结与展望	
�

实体集合扩展-研究背景	
�

Movie	
�

应用场景
I.  QA

II.  信息推荐	
�

III.  知识库探索式搜索	
�

IV.  知识库纠错

问题定义	
�

Tom Hanks movies where he plays a leading role	
�

Problem: given some seeds, find relevant entities having some implicit common features
with those seeds	
�

Semantic Patterns	
�

e1 e2 e3

s1 ? ? ? ?

p11 p11 p11
p13

p12

p12

p12	
�

s2

p21	
�
p21	
�p21	
�

e'1 e'2

p11

?

p21	
�

p12	
�p12	
�

1 1 11:s pπ =

2 2 21 12:s p pπ = o?

p21	
�

p12	
�

1 2 3 1 2(, ,) { , }e e e π πΦ =

关键技术	
�

¨  引入semantic pattern的概念
¤  Step 1: 根据种子节点找到相关的

semantic patterns;
¤  Step 2: 找到满足已找到的

semantic patterns的候选实体;
¤  Step 3: 根据semantic patterns对候

选实体排序(ranking model)

Seeding entity set

Expand model
Mine semantic relevance

Similar entity set

Rank model

Evaluate candidate entity score

排序模型	
�

¨  实体相关度

¨  Discriminability

¨  Relevance

is the anchor entity, and the predicate starring is the rela-
tion between the target entities of ⇡1 and the anchor entity.
For another example, if we want to define people who di-
rected movies where Tom Hanks played a role, the SP can
then be written as: ⇡2 = Tom Hanks : starring�director,
which has two predicates to define the relation. The length
of a SP is the number of labels (predicates) in P . It can be
larger than one when P is a tandem of two or more pred-
icates (e.g., ⇡2), although the cases of length one (a direct
relation, or called 1-hop) are used more often.
Definition 2 (Target Entity) If an entity e has a relation P
with the anchor entity e

a

, i.e., from e
a

to e, there is a path
labelled as P , we say that e is a target entity of ⇡ = e

a

: P ,
which is denoted as e |= ⇡.
We say that e satisfies ⇡ when e |= ⇡. The set of target en-
tities of a SP ⇡ = e

a

: P is denoted as E(⇡) = {e|e |=
⇡}. For example, E(⇡1)={Forrest Gump, Apollo 13,
The Terminal, Cast Away} in the running example of
Figure 1. For a given set of seed entities, we may find some
SPs whose target entities contain all those seed entities. They
are defined as the common semantic patterns of the seeds:
Definition 3 (Common Semantic Pattern) A semantic
pattern ⇡ is a common semantic pattern to a set of entities
{e1, e2, . . ., em}, if 8e

i

2 {e1, e2, . . . , em}, e
i

|= ⇡.
We use �(Q) to denote the set of common semantic patterns
(CSPs) for the seeds in Q. For example, for the seed entity
set {Forrest Gump, Apollo 13, The Terminal}, SPs ⇡1

and ⇡3 = Movie : type are their CSPs.
Due to the limits of the population and the quality of the

knowledge graphs, when more entities are included in the
seed entity set, it is likely that the number of their CSPs will
be significantly reduced. When some seeds are tailed enti-
ties, we may even not find any CSP for them. This will fur-
ther lead to a failure of finding similar entities of the seeds,
which has to depend on the detected CSPs. To overcome this
problem, we relax the definition of CSPs as follows.
Definition 4 (k-relax CSP) A semantic pattern ⇡ is a k-
relax CSP to a set of m entities in Q, if |E(⇡)\Q| � m�k.
We use Q(⇡) = E(⇡) \ Q to denote the set of seeds
in Q satisfying ⇡. A k-relax CSP ⇡ requires that at least
m � k entities of the seeds are target entities of ⇡, i.e.,
|Q(⇡)| � m � k. We use k-CSP to denote a k-relax
CSP, and the notation �k(Q) to represent the set of k-relax
CSPs of the seed set Q. For example, �1({Forrest Gump,
Apollo 13, The Terminal}) = {⇡1,⇡3,⇡4}, where, ⇡4 =
Gary Sinise : starring.

Let us consider another CSP whose length is two,
⇡5 = Concord California : birthplace � starring,
which defines the set of movies having a star born in
Concord California as an actor. As for Tom Hanks is
born in Concord California, all entities satisfying ⇡1 will
satisfy ⇡5 too. We therefore have E(⇡1) ✓ E(⇡5). Obvi-
ously, ⇡1 is more specific than ⇡5. A redundant relationship
can then be defined, to judge which CSP is more specific.
Definition 5 (Redundant CSPs) Given two SPs, ⇡ = e

a

:
P and ⇡0 = e0

a

: P 0, if P 0 = P
00 �P , e

a

|= e0
a

: P
00

, then we
say that ⇡0 is redundant to ⇡, denoted as ⇡ ! ⇡0.

If ⇡ ! ⇡0, then E(⇡) ✓ E(⇡0). In the above example, we
may notice that ⇡1 ! ⇡5. For the given query Q, com-
pared to ⇡1, the CSP ⇡5 is not a compact interpretation of
a common feature shared among the seed entities. It there-
fore needs to be treated as a redundant CSP of ⇡1. In our
solution, all redundant CSPs will be removed from �(Q).

The Overall Solution
To solve the entity set expansion problem, we need to fol-
low two steps to rank entities based on the proposed CSPs
(we use k-CSP and CSP alternatively hereafter): 1) compute
the set of CSPs (�̃(Q)) according to the given query Q; 2)
retrieve and rank the candidate entities (target entities ex-
cluding the seeds) satisfying the detected CSPs in �̃(Q).

As discussed above, due to the limits of the coverage of
knowledge graphs, there may be a very small number (or
even not any) of CSPs (of length one) shared by all the seeds
in Q, we therefore apply the relaxation of CSPs by allowing
some seeds not satisfying the CSPs. Moreover, the length of
CSPs can be extended to be larger than one, so as to include
more CSPs indicating indirect common features. However,
the relaxation and extension of CSPs will of course gener-
ate more false positives of common features that may not be
desired by the user. In addition, more CSPs will reduce the
search performance as well. The selection of CSPs for rank-
ing entities, �̃(Q), therefore has to be carefully designed.

Let �k

h

(Q) be the set of k-CSPs of Q whose length is no
more than h, where k � 0 and h � 1. In our solution, we
apply the union of two sets for ranking entities, i.e., �̃(Q) =
�k

1(Q)
S

�0
h

(Q), where �k

1(Q) includes k-CSPs of length
one, and �0

h

(Q) includes CSPs whose length is extended
up to h. However, those CSPs longer than one will not be
relaxed to avoid generating too many false positive CSPs.

Ranking Model
To effectively evaluate the relevance of the candidate entities
based on the discovered CSPs discussed above, we propose
the following ranking model:

r(e) =
X

⇡2�̃(Q) ^ e|=⇡

d(⇡) ⇤ r(⇡, Q) (1)

The relevance of an entity, r(e), is basically an aggregation
of the score of each CSP ⇡ 2 �̃(Q) that e satisfies, which
is further evaluated as the product of two components d(⇡),
and r(⇡, Q), where d(⇡) is the discriminability of ⇡, and
r(⇡, Q) is the relevance of ⇡ to Q.

Discriminability of CSPs
It is likely that many CSPs can be found from knowledge
graphs, although only some of them are useful for finding
similar entities of seeds. We therefore need a measure to
evaluate the discriminability of a CSP on finding similar en-
tities. Let ⇡ = e

a

: l1�l2�· · ·�ln, and ⇡
i

= e
a

: l1�l2�· · ·�li
where i  n. The discriminability of ⇡ is then defined as:

d(⇡) =
nY

i=1

min(
1

|E(⇡
i

)| ,
|E(⇡

i

)|P
e2E(⇡i)

|E(e : l
i

)|) (2)

is the anchor entity, and the predicate starring is the rela-
tion between the target entities of ⇡1 and the anchor entity.
For another example, if we want to define people who di-
rected movies where Tom Hanks played a role, the SP can
then be written as: ⇡2 = Tom Hanks : starring�director,
which has two predicates to define the relation. The length
of a SP is the number of labels (predicates) in P . It can be
larger than one when P is a tandem of two or more pred-
icates (e.g., ⇡2), although the cases of length one (a direct
relation, or called 1-hop) are used more often.
Definition 2 (Target Entity) If an entity e has a relation P
with the anchor entity e

a

, i.e., from e
a

to e, there is a path
labelled as P , we say that e is a target entity of ⇡ = e

a

: P ,
which is denoted as e |= ⇡.
We say that e satisfies ⇡ when e |= ⇡. The set of target en-
tities of a SP ⇡ = e

a

: P is denoted as E(⇡) = {e|e |=
⇡}. For example, E(⇡1)={Forrest Gump, Apollo 13,
The Terminal, Cast Away} in the running example of
Figure 1. For a given set of seed entities, we may find some
SPs whose target entities contain all those seed entities. They
are defined as the common semantic patterns of the seeds:
Definition 3 (Common Semantic Pattern) A semantic
pattern ⇡ is a common semantic pattern to a set of entities
{e1, e2, . . ., em}, if 8e

i

2 {e1, e2, . . . , em}, e
i

|= ⇡.
We use �(Q) to denote the set of common semantic patterns
(CSPs) for the seeds in Q. For example, for the seed entity
set {Forrest Gump, Apollo 13, The Terminal}, SPs ⇡1

and ⇡3 = Movie : type are their CSPs.
Due to the limits of the population and the quality of the

knowledge graphs, when more entities are included in the
seed entity set, it is likely that the number of their CSPs will
be significantly reduced. When some seeds are tailed enti-
ties, we may even not find any CSP for them. This will fur-
ther lead to a failure of finding similar entities of the seeds,
which has to depend on the detected CSPs. To overcome this
problem, we relax the definition of CSPs as follows.
Definition 4 (k-relax CSP) A semantic pattern ⇡ is a k-
relax CSP to a set of m entities in Q, if |E(⇡)\Q| � m�k.
We use Q(⇡) = E(⇡) \ Q to denote the set of seeds
in Q satisfying ⇡. A k-relax CSP ⇡ requires that at least
m � k entities of the seeds are target entities of ⇡, i.e.,
|Q(⇡)| � m � k. We use k-CSP to denote a k-relax
CSP, and the notation �k(Q) to represent the set of k-relax
CSPs of the seed set Q. For example, �1({Forrest Gump,
Apollo 13, The Terminal}) = {⇡1,⇡3,⇡4}, where, ⇡4 =
Gary Sinise : starring.

Let us consider another CSP whose length is two,
⇡5 = Concord California : birthplace � starring,
which defines the set of movies having a star born in
Concord California as an actor. As for Tom Hanks is
born in Concord California, all entities satisfying ⇡1 will
satisfy ⇡5 too. We therefore have E(⇡1) ✓ E(⇡5). Obvi-
ously, ⇡1 is more specific than ⇡5. A redundant relationship
can then be defined, to judge which CSP is more specific.
Definition 5 (Redundant CSPs) Given two SPs, ⇡ = e

a

:
P and ⇡0 = e0

a

: P 0, if P 0 = P
00 �P , e

a

|= e0
a

: P
00

, then we
say that ⇡0 is redundant to ⇡, denoted as ⇡ ! ⇡0.

If ⇡ ! ⇡0, then E(⇡) ✓ E(⇡0). In the above example, we
may notice that ⇡1 ! ⇡5. For the given query Q, com-
pared to ⇡1, the CSP ⇡5 is not a compact interpretation of
a common feature shared among the seed entities. It there-
fore needs to be treated as a redundant CSP of ⇡1. In our
solution, all redundant CSPs will be removed from �(Q).

The Overall Solution
To solve the entity set expansion problem, we need to fol-
low two steps to rank entities based on the proposed CSPs
(we use k-CSP and CSP alternatively hereafter): 1) compute
the set of CSPs (�̃(Q)) according to the given query Q; 2)
retrieve and rank the candidate entities (target entities ex-
cluding the seeds) satisfying the detected CSPs in �̃(Q).

As discussed above, due to the limits of the coverage of
knowledge graphs, there may be a very small number (or
even not any) of CSPs (of length one) shared by all the seeds
in Q, we therefore apply the relaxation of CSPs by allowing
some seeds not satisfying the CSPs. Moreover, the length of
CSPs can be extended to be larger than one, so as to include
more CSPs indicating indirect common features. However,
the relaxation and extension of CSPs will of course gener-
ate more false positives of common features that may not be
desired by the user. In addition, more CSPs will reduce the
search performance as well. The selection of CSPs for rank-
ing entities, �̃(Q), therefore has to be carefully designed.

Let �k

h

(Q) be the set of k-CSPs of Q whose length is no
more than h, where k � 0 and h � 1. In our solution, we
apply the union of two sets for ranking entities, i.e., �̃(Q) =
�k

1(Q)
S

�0
h

(Q), where �k

1(Q) includes k-CSPs of length
one, and �0

h

(Q) includes CSPs whose length is extended
up to h. However, those CSPs longer than one will not be
relaxed to avoid generating too many false positive CSPs.

Ranking Model
To effectively evaluate the relevance of the candidate entities
based on the discovered CSPs discussed above, we propose
the following ranking model:

r(e) =
X

⇡2�̃(Q) ^ e|=⇡

d(⇡) ⇤ r(⇡, Q) (1)

The relevance of an entity, r(e), is basically an aggregation
of the score of each CSP ⇡ 2 �̃(Q) that e satisfies, which
is further evaluated as the product of two components d(⇡),
and r(⇡, Q), where d(⇡) is the discriminability of ⇡, and
r(⇡, Q) is the relevance of ⇡ to Q.

Discriminability of CSPs
It is likely that many CSPs can be found from knowledge
graphs, although only some of them are useful for finding
similar entities of seeds. We therefore need a measure to
evaluate the discriminability of a CSP on finding similar en-
tities. Let ⇡ = e

a

: l1�l2�· · ·�ln, and ⇡
i

= e
a

: l1�l2�· · ·�li
where i  n. The discriminability of ⇡ is then defined as:

d(⇡) =
nY

i=1

min(
1

|E(⇡
i

)| ,
|E(⇡

i

)|P
e2E(⇡i)

|E(e : l
i

)|) (2)

which is incrementally computed from ⇡1 to ⇡
n

, by a prod-
uct of the minimum of two components. The first component
is a punishment over the number of targeted entities satisfy-
ing ⇡

i

. Larger |E(⇡
i

)| means that entities in E(⇡
i

) are more
loosely correlated. The second component is a punishment
over those entities in E(⇡

i

) which has more triples using l
i

as the predicate (i.e., having large |E(e : l
i

)| for the SP e : l
i

with e 2 E(⇡
i

) as the anchor entity). This is to suppress
high degree entities (with very large fan-outs on l

i

according
to the SP e : l

i

, e.g., countries with the predicate bornIn),
that are very likely to converge to some false positive anchor
entity due to their large fan-outs.

Relevance of CSPs
The relevance of a CSP ⇡ to the query Q, is evaluated as:

r(⇡, Q) =
Y

e2Q

p(e,⇡) (3)

where p(e,⇡) is the probability of e satisfying ⇡. For e |= ⇡,
p(e,⇡) is naturally evaluated as 1. However, for a relaxed
k-CSP, there can be at most k seeds that do not satisfy ⇡,
which may be caused by the deficiency of the knowledge
graphs. We therefore need to evaluate p(e,⇡) for those seeds
that do not satisfy ⇡. Borrowing the idea of collaborative
filtering in recommendation systems, we evaluate p(e,⇡) by
considering the likelihood of e satisfying similar CSPs of ⇡.

p(e,⇡) =

8
<

:

1 if e |= ⇡
P

⇡
02 (⇡)

I(e,⇡
0
)w(⇡

0
,⇡)

P
⇡
02 (⇡)

w(⇡0
,⇡)

otherwise

where I(e,⇡
0
) = 1 if e |= ⇡

0
, otherwise I(e,⇡

0
) = 0;

w(⇡
0
,⇡) = |E(⇡

0
)\E(⇡)|

|E(⇡)| , which determines the weight of
⇡

0
; (⇡) = {⇡0 |⇡0

= e
a

: P
x

}
S
{⇡0 |⇡0

= e
x

: P} with
⇡ = e

a

: P and the length of P
x

is one. Obviously, the set
of similar CSPs of ⇡, (⇡), is derived by substituting the
anchor entity (from e

a

to any other e
x

) or the path (from P
to any other 1-hop P

x

) of ⇡ = e
a

: P respectively.

Experiments
Experimental Setup
Knowledge graphs The DBpedia v3.9 is applied as the
knowledge graphs of our experiments. It is extracted from a
Wikipedia dump in April 2013, containing 4 million entities
of different types. Some sub-datasets of DBpedia v3.9 are
applied in our study: Redirects, Articles Categories, Person-
data, Mapping-based Properties and Mapping-based Types.

Test datasets Two test datasets are used in our study.
QALD (Lopez et al. 2013), the Question Answering over
Linked Data campaign, aims to answer natural language
questions using linked data sources. We use topics from QA
tasks of QALD-2, QALD-3 and QALD-4. After removing
the redundant topics, we get a dataset of 60 topics. Many
QALD topics specify relations of entities (can also be speci-
fied by a SPARQL query) that have mappings to some pred-
icates of DBpedia. For each topic of QALD, the first several
entities of the given ground truth list are picked as seeds.

In INEX-XER 2009 (shorted as INEX) (Demartini, Iof-
ciu, and de Vries 2009), a topic contains a natural language
question asking for a list of entities. In addition, it also pro-
vides several seed entities as the examples of the desired
entities. The original INEX dataset contains 55 topics. We
remove 3 topics who have less than 8 given ground truths,
which are not suitable for testing the performance of solu-
tions to the entity set expansion problem.

Alternative solutions for comparison The metrics
adopted for evaluation include: Precision@N , the mean re-
ciprocal rank (MRR), and R-Precision. In the experiments,
our solution is named as ESER (Entity Set Expansion
via RDF knowledge graphs). We apply 5 baselines for
comparison with ESER: SEAL1, BBR (Bron, Balog, and
de Rijke 2013), LDSD (Passant 2010), ARM (Abedjan
and Naumann 2013) and QBESS (Metzger, Schenkel, and
Sydow 2014). SEAL is a solution from unstructured texts.
It uses the Google search engine for retrieving relevant
documents. We do not compare with SEISA (He and
Xin 2011) because we cannot obtain the query log. BBR
combines a term-based language model with a structural
model for ranking entities based on seeds. LDSD, ARM and
QBESS are adapted from semantic distance approaches on
knowledge graphs. For LDSD, we simply use the average
distance of an entity to the seeds as its semantic distance to
the query Q. ARM applies association rules mining, i.e., the
frequent items (predicate-object pairs) shared by seeds, to
rank the candidate entities. QBESS is a novel framework
which defines entity similarities based on structural features.
Note that a personalized PageRank algorithm (Bahmani,
Chowdhury, and Goel 2010) is also tested by ignoring the
labels of predicates in knowledge graphs. However, we
do not report its results simply because its performance
is much worse than the others. For ESER, when testing it
for different ranking components and settings, we use the
label ESER (for testID) to indicate that the test is under the
default setting (i.e., �̃(Q) = �3

1(Q)
S
�0

2(Q)). Note that all
significant tests are conducted using a one-tailed t-test at a
significance level of p = 0.05.

Experimental Results
An overall comparison We first test the performance of
the compared solutions on the two datasets, using 5 groups
of different numbers of seeds. Note that the mix group con-
tains topics whose numbers of seeds are between 2 to 5. We
use the original INEX dataset (which provides seeds) as the
mix of INEX. For the mix of QALD, we determine the num-
ber of seeds for each topic based on the ambiguity of the
seeds, by giving more seeds to a topic with ambiguous enti-
ties (Note that all topics will be available for public). Results
of each topic are evaluated based on the given ground truths
(excluding the seeds).

Table 1 and Table 2 show the results. In general, LDSD
performs worse than the others on both datasets, show-
ing that a simple semantic distance approach on entities of
knowledge graphs is far from judging effective semantic cor-
relations among entities. In general, ESER performs the best

1https://github.com/TeamCohen/SEAL

实验设置	
�

¨  RDF 知识库
¤  DBPedia Version 3.9， 4M entities

¨  测试集
¤  QALD-2/3/4，INEX-XER 2009

¨  评价指标
¤  Precision@N，R-Precision，MRR

¨  对比对象
¤ BBR, SEAL, LDSD, ARM and QBESS

主要结果	
�

Table 1: Comparison on the QALD dataset
SLT seeds p@5 p@10 p@20 MRR R-pre

SEAL 2 .377 .290 .208 .550 .269
BBR 2 .350 .307 .253 .478 .283

LDSD 2 .133 .100 .078 .273 .100
QBESS 2 .400 .353 .267 .545 .338
ARM 2 .503• .420• .322• .661• .375•

ESER 2 .547•
⇤ .460•

⇤ .372•
⇤ .699•

⇤ .457•
⇤

SEAL 3 .453 .363 .267 .591 .340
BBR 3 .467 .363 .287 .604 .337

LDSD 3 .103 .082 .063 .194 .084
QBESS 3 .410 .343 .266 .536 .359
ARM 3 .550• .468• .372• .665• .446•

ESER 3 .613•
⇤ .498•

⇤ .387•
⇤ .773•

⇤ .501•
⇤

SEAL 4 .420 .350 .270 .539 .354
BBR 4 .467 .365 .290 .654 .345

LDSD 4 .097 .077 .055 .252 .075
QBESS 4 .373 .290 .225 .465 .340
ARM 4 .527• .430• .348• .716• .420
ESER 4 .613•

⇤ .502•
⇤ .392•

⇤ .801•
⇤ .525•

⇤
SEAL 5 .410 .317 .247 .535 .352
BBR 5 .453 .362 .288 .627 .336

LDSD 5 .130 .083 .060 .284 .090
QBESS 5 .370 .285 .227 .488 .353
ARM 5 .503• .418• .342• .665• .426
ESER 5 .563•

⇤ .465•
⇤ .381•

⇤ .726•
⇤ .515•

⇤
SEAL mix .447 .347 .249 .592 .335
BBR mix .447 .370 .292 .570 .347

LDSD mix .130 .100 .069 .268 .100
QBESS mix .510 .417 .332 .630 .420
ARM mix .537• .443• .337• .646• .433•

ESER mix .633•
⇤ .510•

⇤ .403•
⇤ .799•

⇤ .559•
⇤

Table 2: Comparison on the INEX dataset
SLT seeds p@5 p@10 p@20 MRR R-pre

SEAL 2 .412? .388? .331? .542? .327?

BBR 2 .312 .265 .200 .501 .208
LDSD 2 .092 .081 .063 .237 .072

QBESS 2 .246 .223 .186 .330 .202
ARM 2 .223 .217 .188 .367 .199
ESER 2 .400? .383? .287? .551? .304?

SEAL 3 .462? .433? .354? .547? .377?

BBR 3 .312 .288 .217 .506 .242
LDSD 3 .092 .065 .047 .247 .055

QBESS 3 .219 .194 .169 .310 .190
ARM 3 .188 .185 .168 .262 .187
ESER 3 .500? .415? .311? .684? .340?

SEAL 4 .423? .383? .319? .530? .339?

BBR 4 .312 .290 .239 .527 .252
LDSD 4 .088 .069 .057 .193 .067

QBESS 4 .181 .163 .144 .222 .161
ARM 4 .254 .233 .186 .345 .208
ESER 4 .504? .446? .341? .633? .376?

SEAL 5 .377 .340 .284 .418 .311
BBR 5 .346 .327 .257 .593 .282

LDSD 5 .092 .075 .059 .179 .069
QBESS 5 .173 .154 .135 .205 .153
ARM 5 .227 .227 .187 .322 .219
ESER 5 .492•

? .433•
? .336•

? .629•
? .381•

?

SEAL mix .473⇤ .398⇤ .305 .644 .330
BBR mix .358 .315 .251 .597 .279

LDSD mix .112 .087 .062 .271 .063
QBESS mix .427 .367 .273 .579 .300
ARM mix .350 .304 .239 .535 .273
ESER mix .515•

? .440•
? .350? .701? .409•

?

on almost all the test cases, with two exceptions beaten by
SEAL on the INEX dataset when the topics contain only 2 or
3 seeds. SEAL benefits a lot from the usage of Google search
engine. We find that there are a couple of topics where SEAL
can find the result file of INEX-XER 2009. As a result, the
precision of SEAL over these topics is extremely high. We
find that ARM performs the second in QALD. The way of
using frequent item sets on predicate-object pairs serves the
purpose of finding common features of seeds. However, the
lack of an effective ranking model causes that ARM per-
forms worse than ESER. The notation • denotes significant
difference over SEAL, the notation ⇤ denotes significant dif-
ference over ARM in Table 1, and the notation

?

denotes
significant difference over BBR in Table 2.

For SEAL, the performance is consistent on the two
datasets. This is because SEAL uses the web search engine
as a tool to find candidates. It is not constrained to either the
DBpedia dataset (QALD) or the Wikipedia corpus (INEX).
We also observe that all solutions proposed in knowledge
graphs perform better on QALD than on INEX. One reason
is that QALD originally uses the linked data as sources. This
is also reasonable because the topics of QALD can be typi-
cally transformed to SPARQL queries over DBpedia. There-
fore, it will be easy for ESER to detect the CSPs (and also
for the associate rule based methods to detect frequent item
sets on predicate-object pairs) from the knowledge graphs
for the QALD dataset. On the other hand, topics of the INEX

dataset are very ad-hoc, many of them cannot find mappings
to predicates as well as CSPs in DBpedia.

When looking into the impact of the number of seeds m
on the performance of the different solutions, we find that
most solutions perform worst when m = 2, which means
that there are not enough seeds to distinguish the common
features shared among the seeds. When m is enlarged from
2 to 5, the performance of SEAL and ESER basically in-
creases. However, the growth rate is not significant when
m > 3 (for SEAL on INEX, the performance even drops
when m is enlarged from 3 to 4 and 5). For ESER, it ben-
efits more from the enlargement of m on the INEX dataset
than on the QALD dataset. This is reasonable because more
seeds help ESER to discover more CSPs in the INEX dataset
which are more implicit than those in QALD (note that a cer-
tain percentages of seeds in INEX do not have good matches
to the entities of the DBpedia knowledge graphs).

We also find that the impacts of m on QBESS have dif-
ferent trends on the two datasets. This is because QBESS re-
quires all seeds to have the applied common features (Met-
zger, Schenkel, and Sydow 2014). Due to the lower map-
ping quality of INEX topics to the DBpedia, when m is
enlarged, less evidences will be found for explaining the
relevance among the seeds. The search quality will there-
fore drop when m is enlarged. ESER does not has this phe-
nomenon simply because it has a relaxing mechanism that is
noise-resistant.

SEED	
�

Triple PredictionEntity Set Expansion

Exploration Visual Debugging Visual

py p

Semantic Pattern Miner Frequent Item Generator

Association Rule MinerCandidate Generator

Confidence�MakerRanking Model

Triple ManagerTriple Manager

Main Store

用户界面	
�

ICDE’16 Demo	
�

4

Fig. 2. The user interface of a use case

C. Use Cases

We designed some use cases to facilitate the audience
to understand the system. The audience can freely choose
a seed from the provided topics, and initiate an entity ex-
ploration process. For example, given a famous database
researcher Jim Gray as input, we can quickly see the relevant
SPs on the right side, including Turing Award : award,
Database Researchers : subject, etc. The left side shows
a list of similar entities. Through hovering the mouse, we
can easily detect the relationships between entities and SPs,
where the focused entity satisfies those star-marked SPs, and
vise versa. If we are more interested in database researchers
with the title of ACM Fellow, we can either provide more
relevant seeds or focus on some specified SPs. For example,
we further explore the KGs by selecting Jeffrey Ullman
as another seed via clicking the up-arrow sign of the result
Jeffrey Ullman. However, we find that some of the top
entities do not satisfies our need. We may directly focus on
the SP of ACM Fellow for filtering results. Casually, we find
Edgar Codd, Jim Gray and Michael Stonebraker are all
Turing Award winners in database area, in order to discover
more common relations among them, we can update seeds
by choosing above entities. After browsing, we detect that
Michael Stonebraker misses some SPs due to the deficiency
of KGs.

As illustrated in Figure 2, when Michael Stonebraker
(No. 1 entity) is clicked on the left, the right side will
highlight those SPs that mismatch (with a plus sign) with it,
implying that the KGs do not contain the corresponding triples
connecting the SPs and the entity. The color of the plus signs

indicates the confidence of the system about the mismatch,
and blue ones mean recommendations of highest confidence.
We can correct the mismatch by clicking the plus sign, the
system will automatically create a triple for it and insert it
into the underlying KG as delta knowledge. The new triples
will take effect immediately in the next round of exploration
if we choose to explore with new triples.

A video about a use case of the SEED system is available
at https://youtu.be/JODksVUvoRc.

REFERENCES

[1] Z. Abedjan and F. Naumann. Improving RDF data through association
rule mining. Datenbank-Spektrum, 13(2):111–120, 2013.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules
between sets of items in large databases. In SIGMOD, pages 207–216,
1993.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G.
Ives. Dbpedia: A nucleus for a web of open data. In ISWC, pages
722–735, 2007.

[4] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. YAGO2: A
spatially and temporally enhanced knowledge base from wikipedia. Artif.
Intell., 194:28–61, 2013.

[5] A. Passant. dbrec - music recommendations using dbpedia. In ISWC,
pages 209–224, 2010.

[6] E. Prud-hommeaux and A. Seaborne. Sparql query language for rdf. In
W3C. http://www.w3.org/
TR/rdf-sqarql-query/, 2008.

[7] X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering
techniques. Advances in Artificial Intelligence, 2009.

[8] T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k exploration of
query candidates for efficient keyword search on graph-shaped (RDF)
data. In ICDE, pages 405–416, 2009.

知识纠错	
�

¨  Semantic patterns能够帮助我们预测知识缺陷
¨  Association rule mining方法的引入

¤ Top相关实体作为transactions
¤ 每个实体对应谓词集合作为一个transaction的items
¤ 找到所有的频繁项X
¤ 如果存在一个频繁项X能够imply一个谓词p, 则预测

p可能是e的一个谓词
¤ 同理，可以预测另一个实体e’是不是的e关联实体
¤ 进而预测e是否满足一个SP：e’:p，即<e, p, e’>是否

成立

系统展示	
�

¨  前端:
¤  Html5+CSS3+Javascript+Ajax

n  Bootsrap
n  Echarts

¨  后端:
¤  类消息传递的模型

n  可扩展
¤  Mysql

¨  URL:
¤  http://202.112.114.205:8080/SEED

总结与展望	
�

¨  总结
¤  老问题上的新方法
¤  性能优良
¤  扩展性强

¨  展望
¤  加强纠错功能

n  多版本控制
n  内部错误挖掘

¤  提升查询性能
n  速度
n  准确度	
�

¨  谢谢关注！

¨  陈跃国
¨  chenyueguo@ruc.edu.cn	
�

