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Knowledge Graph
Google launches Knowledge Graph project at 2012.
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Knowledge Graph

Essentially, KG is a sematic network, which models the

entities (including properties) and the relation between

each other.



Resource Description Framework (RDF)

• RDF is an de facto standard for

Knowledge Graph (KG).

• RDF is a language for the 

conceptual modeling of 

information about web resources

• A building block of semantic web

• Make the information on the web 

and the interrelationships among 

them "Machine Understandable"
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RDF & SPARQL

Subject Predicate Object

Resident_Evil:_Retributi
on

type film

Resident_Evil:_Retributi
on

budget “6.5E7"

Resident_Evil:_Retributi
on

director Paul_W._S._Anderson

Paul_W._S._Anderson type director

Resident_Evil director Paul_W._S._Anderson

Paul_Anderson_(actor) type actor

The_Revenant strarring Philadelphia

Priestley Medal awards Paul S. Anderson

Maclovia_(1948_film) distributor Filmex

RDF Datasets

SELECT ?y WHERE
{
?x director Paul_W._S._Anderson .
?x type film .
?x budget ?y.
}

SPARQL
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“What is the budget of the film 
directed by Paul Anderson ?.”



Interdisciplinary Research

Knowledge Engineering
KB construction

Rule-based Reasoning

Machine

Learning
Knowledge

Representation

(Graph Embedding)

Natural Language

Processing
Information Extraction

Semantic Parsing

Database
RDF Database

Data Integration 、Knowledge Fusion
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KG-based Question/Answering

• SPARQL syntax are too complex for ordinary users

• RDF KG is“schema-less”data, not like schema-first

relational database.
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• An Easy-to-Use Interface to Access Knowledge Graph

• It is interesting to both academia and industry.

• Interdisciplinary research between database  and NLP  

(natural language processing) communities.
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KG-based Question/Answering



“(Researchers) They must invest much more

in bold strategies that can achieve natural-

language searching and answering”
---Oren Etzioni, Search needs a shake up,

NATURE, Vol 476, p25-26, 2011.

Oren Etzioni, AAAI Fellow
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KG-based Question/Answering



	

Facebook Graph Search

“My friends who live in Canada”

“ Facebook Graph Search” 
------announced by  Mark 
Zuckerberg on January 16, 
2013
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Facebook Graph Search

“Photos of my friends who live in Canada”
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EVI---(originally, True Knowledge)

Venture Capital

2007-09 1.2 Million USD

2008-07 4 Million USD

2012-01 Acquired by Amazon

William Tunstall-Pedoe: True Knowledge: Open-Domain Question Answering using 
Structured Knowledge and Inference. AI Magazine 31(3): 80-92 (2010)
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• Information Retrieval-based
• Generate candidate answers
• Ranking

• Semantic Parsing-based
• Translate NLQ to logical forms
• Executing
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KG-based Question/Answering



(Cite: Nan Duan, MSRA)



• Information Retrieval-based
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KG-based Question/Answering

Paul.W.S.Anderson

film director

Resident_Evil

“6.5E7”

type

budget

type

“What is the budget of the film 
directed by Paul Anderson?”

director



• Information Retrieval-based
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KG-based Question/Answering

Paul.W.S.Anderson

film director

Resident_Evil

“6.5E7”

type

budget

type

“What is the budget of the film 
directed by Paul Anderson?”

Mentioned entity
Step. 1

Step. 2
Candidate Answer Selection
(within 2-hops)

Step. 3
Ranking Answers

“6.5E7”

director
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Question Answering with Subgraph Embeddings
[Bordes et al. EMNLP 2014]
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Question Answering with Subgraph Embeddings
[Bordes et al. EMNLP 2014]

Let 𝑊 be a matrix k N

k:   the dimension of the embedding space
N:  

W SN N N 

WN is the number of words 

SN is the number of entities and relation 
types

( ) ( )f q W q

Embedding a question q

( )q is a sparse vector indicating 
the presence of words 
(usually 0 or 1).



( ) ( )g a W a

Embedding a candidate answer a 

( )a is a sparse vector 
representation of the answer a

• Single Entity 
The answer is represented as a single 
entity:

is a 1-of-Ns coded vector with 1 
corresponding the answer. 

( )a

• Path Representation 
The answer is represented as a path from 
the entity mentioned in the question to the 
answer entity a. 

is a 3-of-Ns (or 4-of-Ns) coded vector, 
expressing the start and the end entities of 
the path and the relation types (but not 
entities) in-between. 
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Paul.W.S.Anderson

film director

Resident_Evil

“6.5E7”

type

budget

type
director

2-hop paths

( )a

Question Answering with Subgraph Embeddings
[Bordes et al. EMNLP 2014]

Candidate
Answer



( ) ( )g a W a

Embedding a candidate answer a 

( )a is a sparse vector 
representation of the answer a

• Subgraph Representation 
The answer is represented both the path 
and 1-hop neighbors around the answer a. 
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Paul.W.S.Anderson

film director

Resident_Evil

“6.5E7”

type

budget

type
director

1-hop 
neighbors

Question Answering with Subgraph Embeddings
[Bordes et al. EMNLP 2014]

Candidate
Answer
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The loss function

max{0,m- S(q
i
,a
i
) + S(q

i
,a ')}

a 'ÎA '(a
i
)

å
i=1

|D|

å

A '(a
i
) is a set of incorrect canidates to question q.

Question Answering with Subgraph Embeddings
[Bordes et al. EMNLP 2014]

( , ) ( ) ( )TS q a f q g a

Scoring Function candidate answer 

question sentence



Question Answering over Freebase with Multi-Column 
Convolutional Neural Networks [Dong et al., ACL 2015]



Question Answering over Freebase with Multi-Column 
Convolutional Neural Networks [Dong et al., ACL 2015]

1 1 2 2 3 3

( , )

( ) ( ) ( ) ( ) ( ) ( )T T T

S q a

f q g a f q g a f q g a



 

Scoring Function

answer path answer context answer type

candidate answer question sentence



MCCNNs for 
Question Understanding

1 2... nq w w wLet the question 

The look layer transform every word into a vector 

( )j v jw W u w

| |
,

 is the word embedding dimention and 

|V| is the vocabulary size 

vd V

v

v

W

d




Question Answering over Freebase with Multi-Column 
Convolutional Neural Networks [Dong et al., ACL 2015]



MCCNNs for 
Question Understanding

1 2... nq w w wLet the question 

The max-pooling layer 

( [ ... ... ] )T T T

j j s j j sx h W w w w b  

The convolutional layer computes representation of 
the words in sliding windows. 

1,...,( ) max { }j n jf q x

Question Answering over Freebase with Multi-Column 
Convolutional Neural Networks [Dong et al., ACL 2015]



Embedding Candidate Answers

Answer Path

1

1

1
( ) ( )

( )
p p

p

g a W u a
u a



( )pu a is a length-|R| binary vector, 
indicating the presence or absence of 
every relation in the answer path. 

| |qd R

pW


 is the parameter matrix

Question Answering over Freebase with Multi-Column 
Convolutional Neural Networks [Dong et al., ACL 2015]



Embedding Candidate Answers

Answer Context 
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1

1
( ) ( )

( )
c c

c

g a W u a
u a



( )cu a is a length-|C| binary vector, 
indicating the presence or absence of 
every entity or relation in the context. 

| |qd C

cW


 is the parameter matrix

The 1-hop entities and relations connected to the 
answer path are regarded as the answer context. 

Question Answering over Freebase with Multi-Column 
Convolutional Neural Networks [Dong et al., ACL 2015]



Embedding Candidate Answers

Answer Type
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1

1
( ) ( )

( )
t t

t

g a W u a
u a



( )tu a is a length-|T| binary vector, 
indicating the presence or absence of 
answer type.

| |td T

tW


 is the parameter matrix

Type information is an important clue to score candidate 
answers.  

Question Answering over Freebase with Multi-Column 
Convolutional Neural Networks [Dong et al., ACL 2015]



Model Training 

( , , ') ( ( , ) ( , '))l q a a m S q a S q a   

For every correct answer a of the question q, we randomly sample k 
wrong a’ from the set of candidate answers, and use them as the 
negative instances to estimate parameters.  

'

1
min ( , , ')

| |

\

 is the correct answer set to question .

 is the set of canidate answer set to question .

q qq a A a Rq

q q q

q

q

l q a a
A

R C A

A q

C q

 



  

Question Answering over Freebase with Multi-Column 
Convolutional Neural Networks [Dong et al., ACL 2015]
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Question Answering on Freebase via Relation Extraction and 
Textual Evidence [Xu et al., ACL 2016]

胡森
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Question Answering on Freebase via Relation Extraction 
and Textual Evidence[Xu et al., ACL 2016]

Relation Extraction
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"who plays ken barlow in coronation street?“

decompose

“who plays ken barlow”
+

“who plays in coronation street”

Question Answering on Freebase via Relation Extraction 
and Textual Evidence[Xu et al., ACL 2016]

Question Decomposition



• Information Retrieval-based
• Generate candidate answers
• Ranking

• Semantic Parsing-based
• Translate NLQ to logical forms
• Executing
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KG-based Question/Answering



Semantic Parsing

[Zettlemoyer et al., UAI 05]

Transforming natural language (NL) sentences into computer 
executable complete meaning representations (MRs)
for domain-specic applications.

E.g., “Which states borders New Mexico ?”

Lambda-calculus [Alonzo Church, 1940 ]

“Simply typed Lambda-calculus can express varies database 
query languages such as relational algebra, fixpoint logic and 
the complex object algebra." [Hillebrand et al., 1996]
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Semantic Parsing

• Manually constructed rules
[Pedoe, AI magazine 2010]

• Grammar-based, e.g., 
Combinatory Categorial Grammar 

[Zettlemoyer and Collins, UAI 2005]

• Supervised Learning
[Berant and Liang, ACL 2014] Template-based Approach [cite:

Weiguo Zheng, Lei Zou, et al.,
SIGMOD 15]



Semantic Parsing via Staged Query Graph Generation:
Question Answering with Knowledge Base [Yih et al., ACL 2015]



Semantic Parsing via Staged Query Graph Generation:
Question Answering with Knowledge Base [Yih et al., ACL 2015]

Query Graph Generation



Semantic Parsing via Staged Query Graph Generation:
Question Answering with Knowledge Base [Yih et al., ACL 2015]

Query Graph Generation



Semantic Parsing via Staged Query Graph Generation:
Question Answering with Knowledge Base [Yih et al., ACL 2015]

Reward Function



Semantic Parsing via Staged Query Graph Generation:
Question Answering with Knowledge Base [Yih et al., ACL 2015]

Identifying Core Inferential Chain
(Relation Extraction)

two neural networks
1) question
2) inferential chain

Compute Similarity 
(e.g. cosine)



Language to Logical Form with Neural Attention 
[Dong et al., ACL 2016]



Language to Logical Form with Neural Attention 
[Dong et al., ACL 2016]



• Using graph matching-

based method

• Graph Matching-based

Disambiguation

• Combing Disambiguation

and Query together
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Our Approach- Data Driven & Relation-first framework

gAnswer [Zou et al, SIGMOD 14]



Semantic Query Graph

Our Approach- Data Driven & Relation-first framework

gAnswer [Zou et al, SIGMOD 14]



Our Approach- Data Driven & Relation-first framework

gAnswer [Zou et al, SIGMOD 14]
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Besides KG, we require two dictionaries.

• Entity Mention Dictionary

• Relation Mention Dictionary

It helps the entity linking  task  
[Spitkovsky et al., LERC 12; Chisholm et al, TACL 15]. 

Mapping the natural language relation 
phrases to predicate in RDF dataset.

[Nakashole et al., EMNLP-CoNLL 2012]



• Question Understanding
- Relation extraction

Relation Paraphrase Dictionary

Our Approach- Data Driven & Relation-first framework

gAnswer [Zou et al, SIGMOD 14]



• Question Understanding
- Find associated arguments

Our Approach- Data Driven & Relation-first framework

gAnswer [Zou et al, SIGMOD 14]



• Question Understanding
- Query Graph Assembly

Our Approach- Data Driven & Relation-first framework

gAnswer [Zou et al, SIGMOD 14]



Question Answering over Knowledge Graph 胡森

• Query Execution

Our Approach- Data Driven & Relation-first framework

gAnswer [Zou et al, SIGMOD 14]



• Limitations
- Still highly relied on parser and heuristic rules

- Can not handle implicit relations

What is the budget of the film directed by Paul Anderson 
and starred by a Chinese girl

<?girl, dbo:country, dbr:China>

Our Approach- Data Driven & Relation-first framework

gAnswer [Zou et al, SIGMOD 14]



• Data Driven!
• The structure of query graph can be modified in 

execution stage.

• First recognize nodes.

Our Approach- Data Driven & Node-first framework

gAnswer+ [Hu and Zou et al, TKDE 17]



Hyper Query Graph

• Extend SQG by allowing false edges.

query graph semantic query graph hyper query graph

Our Approach- Data Driven & Node-first framework

gAnswer+ [Hu and Zou et al, TKDE 17]



• Question Understanding
- Node recognizing

entity extraction + conflict resolution
- entity, type, literal, wildcard

- constant, variable

- modified, hidden information

Our Approach- Data Driven & Node-first framework

gAnswer+ [Hu and Zou et al, TKDE 17]



• Question Understanding
- Build structure of HQG

connect which two nodes?

Our Approach- Data Driven & Node-first framework

gAnswer+ [Hu and Zou et al, TKDE 17]



Our Approach- Data Driven & Node-first framework

gAnswer+ [Hu and Zou et al, TKDE 17]



• Question Understanding
- Finding relations

Explicit relation

Our Approach- Data Driven & Node-first framework

gAnswer+ [Hu and Zou et al, TKDE 17]



• Question Understanding
- Finding relations

Implicit relation

<China>

<starring>

Our Approach- Data Driven & Node-first framework

gAnswer+ [Hu and Zou et al, TKDE 17]

• Locating the two nodes in KG and finding
the frequent predicate between them. 



• Query Executing
- A top-down algorithm

• Naïve method
(1) Enumerate spanning subgraph of HQG,
(2) Call algorithm SQG executing algorithm
(3) Sort and select top-k matches

• Advanced method
(1) Add <drop, 0> to the candidate list of unsteady 

edges
(2) Call algorithm 3

Our Approach- Data Driven & Node-first framework

gAnswer+ [Hu and Zou et al, TKDE 17]



• Query Executing
- A top-down algorithm

Drawbacks
- Query graphs with higher scores may have no 
matches

s p o

var

… …

1e

ne

1p

mp

Our Approach- Data Driven & Node-first framework

gAnswer+[Hu and Zou et al, TKDE 17]



• Query Executing
- A bottom-up algorithm

Intuition
- Growing structures step by step

- Keep correct structures when growing

- Find matches of multi-label query graph (SQG)

- Drop useless candidates as early as possible

Our Approach- Data Driven & Node-first framework

gAnswer+ [Hu and Zou et al, TKDE 17]



• Query Executing
- A bottom-up algorithm

Our Approach- Data Driven & Node-first framework

gAnswer+ [Hu and Zou et al, TKDE 17]



• Query Executing
- A bottom-up algorithm

Optimization
- Call GraphExplore() only when adding 

unsteady edges

- Design cost model to estimate the best 
explore order

Our Approach- Data Driven & Node-first framework

gAnswer+ [Hu and Zou et al, TKDE 17]



Experiments  

QALD is a series of evaluation campaigns on question 
answering over linked data. 

QALD-6 Competition Results



Experiments  

WebQuestions is widely used in Question Answering 
literatures and does not contain golden SPARQL queries.

WebQuestions Results



Online Demo

URL:    http://ganswer.gstore-pku.com/

http://ganswer.gstore-pku.com/


Semantic Parsing（NLP）+Query Evaluation （DB）

Where is the
nearest post office？

SPARQL

SELECT ?x WHERE {
?x rdf:type Post.
?x :longitude ?o.
?x :latitude ?a. }
ORDERY BY Dist(HERE, [?o, ?a]) 
LIMIT 1
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Is it Possible ?
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与深圳狗尾草公司合作.

6600 万 Triples
Zhishi.me

刘德华的女儿是？
柬埔寨首都在哪儿？

An open-source Graph
RDF database

SPARQL

公子小白
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